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SErION I

I=OD(J ON

The area of Coputational Fluid Dynamics (CED) has seen tremenous

progress in recent years, due to improvements in both computational

algorithms and computer hardware. The improvents now make it possible

to obtain steady inviscid solutions for very conplex configurations such

as modern fighter aircraft and the external weapons used on these

aircraft (Reference 1). However, many of these aircraft and weapons

operate in flow conditions which make inviscid solutions an inappropriate

model. Modern fighter aircraft must be able to release stores and

missiles while maneuvering at transonic speeds. The analysis of these

problem requires unsteady calculations, as does the analysis of

aeroelastic problems. Many modern fighter aircraft have internal hays in

which to carry their weapons. The analysis of these problem requires

that a highly separated unsteady flow field be solved. Solutions which

include the effects of viscosity are necessary to appropriately model

these flow fields; however, for these types of configurations viscous

solutions are not practical with current CFD codes, due to the large

computer run times and large mnory requirements. The emphasis of the

work presented here is development of a schem which is conputationally

efficient and accurate enough to make viscous calculations possible for

the design and analysis of these configurations in steady and unsteady

flow fields.

The approach taken is an extension of two Euler algorithms de-

scribed by Belk , and Whitfield 3. The schemes used in this work are

first, a flux vector split scheme based on Steger-Warming I splitting

I



and secondly, a flux differnce split scheme based on Roe's 5

approximate Riemann solver. The inclusion of the viscous terms into

these Euler algorithms is acccplished as described by Gatlin 6, where

the viscous terms have been added to the algorithm explicitly, in order

to save the cost of computing and storing the viscous flux jacobians. The

explicit treatment of the diffusive terms also preserves the

computational efficiency peculiar to the inviscid algorithm.

The three-dimensional Navier-Stokes equations in differential form

are presented in Section II. The curvilinear coordinate transformation

and the thin-layer assumption to reduce the Navier-Stokes equation set

are also presented.

A comparison of the two basic implicit algorithms is presented in

Section III. A short discussion is presented which cctnpares and

contrasts the two splitting techniques, flux vector splitting (FVS) and

flux difference splitting (FDS). The advantages and disadvantages of the

two algorithms are discussed, with the discussion based on the one-

dimensional Euler equations. The two algorithms are then extended to the

three-dimensional Euler equations. The FVS algorithm has been presented

in some detail by Whitfield 7 (for stationary grids), and Belk 2 (for

dynamic grids) and therefore is only summarized here. This algorithm has

been used by many people to obtain solutions for the Euler equations

which ccmpare well with experimental data for both steady and unsteady

transonic flow problems. LijewskiS has shown excellent steady results

for a ccnplex canard-body-tail configuration at transonic Mach numbers

and moderate range of incidence angles, while Belk 9 has shown

msteady results for oscillating airfoils and wings. However, Gatlin

2



and van Leer 0 have shown that in some cases the FVS scheme is too

dissipative to give good numeical results for viscous calculations,

especially in high gradient regions such as boundary layers. Also

presented in Section III is a discussion of the FDS scheme based on Roe's

method of evaluating the numerical fluxes for the three-dimensional Euler

equations. Recent works by van Leer'0 and Chakravarthy (References

11,12, 13, 14) and many others have discussed implementations of this FDS

scheme. However, Whitfield, et al. 3 and Janus 15 have described a

hybrid Roe algorithm which has been used to obtain excellent inviscid

results for complex flow fields' 6 .

Section IV discusses the extension of the inviscid algorithms

discussed in Section III to the thin-layer Navier-Stokes (TLNS)

equations. The viscous terms are added to the explicit side of the

solution equation and are therefore treated as source terms to the

inviscid equations. This treatment of the viscous terms reduces the cost

of normal viscous calculations substantially by saving the cost

associated with ccrrputing and storing the viscous flux jacobians.

Additionally, work was performed to allow for more efficient calculations

of unsteady viscous flows using the time lagged viscous terms. One of

the major problem with unsteady TLNS calculations is the severe time

step size limitations which must be imposed to maintain a reasonable

Courant-Friedrichs-Lewy (CFL) number. Efforts to execute the unsteady

TLNS code for oscillating airfoils and wings using very large CFL numbers

are discussed. In order to maintain stability at these large CFL numbers

a form of subiterations similar to those described in Reference 17 has

been implemented. The result of subiterations is to converge the

solution at a given time step before preceding to the next step, thus

3



0 eliminating linearization and factorization errors and increasing the

stability.

Section V describes the steady results obtained for transonic Mach

numbers and moderate range of incidence angles for a laminar flat plate,

RAE 2822 airfoil and the ONERA M6 wing. All the results presented in

this chapter show a comparison between the FVS and FDS algorithm for

viscous solutions and are ccpared with experimental data where

available.

Section VI discusses the unsteady results for both oscillating

airfoils and wings in transonic flow and moderate range of angles of

attack. The oscillating airfoil case (NACA 0012) is compared for various

time steps sizes and number of subiterations while the oscillating wing

(Langley Rectangular Planform Supercritical Wing) results are ccmpared

with the inviscid results of Belk 2 and experimental data.

Conclusions are given in Section VII.

4



O SEMTON II

NAVIER-STIOKS EQUATIONS

2.1 Vector Form of the Navier-Stokes Equations

The ccxpressible, three-dimensional Navier-Stokes equations in

Cartesian coordinates, written in strong conservation form (without

body forces or external heat addition) are

A A A

A A + a - 0 (2.1)

at ax , z

A A A A
where q, f ,g, and h are dimensional quantities given by

A

p
AApu

A AA
q= pv

AA A

pw

Le

= AAA

PU +V-T X

A hAA A

pUW-Txz

L A \ A A A A A

(e+p )jUTxx-VTXY-WT .Z q

0



A APV

AAA

pttV-Ty
x

A = AA
2 

A -

g = pV +p-Tyy

AA A -

pVW- Ty

A + A A A- A A A

e +p V-Tyx-VT y-WTyz+qy

A A

PW

AA A

pUW-Tz

A .. A A
hI pVW-Tzy

AA2 A -pw +p-T=

A A A A A A
Z  

A

A
A 1A A2 A2A2

and e + Jp( +

The first row in Equation (2.1) corresponds to the continuity

equation, the next three rows are referred to as the momentum equations

and the last row is the energy equation. In the strictest sense only the

mmentum equations are the Navier-Stokes equations; however, it is ccamon

practice to refer to the entire set of five equations as the Navier-

Stokes equations.

The density of the fluid is 1-1, the pressure is p, and the velocity
n A A \

carponents in the Cartesian coordinate directions x,/y, and are u ,

6



rand respectively. The relationship between and is the result

of the perfect gas assumption and y is the ratio of specific heats,

Cp (2.2)

The components of the viscous stress tensor are given as

If the fluid is assuned to behave as a 'Newtonian fluid", that is, the

stress is linearly dependent on the rates of strain of the fluid and the

coefficient of bulk viscosity is negligible so that the relationship
A A

between f(coefficient of viscosity) and X(second coefficient of

viscosity) is

X 2A=-p (2.3)

then the viscous stress tensor in Cartesian coordinates is given as,

A 2 A A AS= (2 i -fi -w.
T 2( - -)

A 2 ( -t -V (2.4)
AT 2  Af A ATzz =1 3 4 z Ux Vy(24

A A A ,A A
T =y T = [ U +V

A A A A A
^~ T^ '(W
gXz = zX = t

T yz Tzy [ (VZ + .Y

and the heat-flux vector in the Cartesian coordinate directions is given

as

A q, [t A
A |1A

qY =- TV (2.5)

7



* A

q - - r

where Pr is the Prandtl number.

It should be noted that the subscripts on the velocity coponents

, , and on the temperature ' denote partial differentiation,

while those on the stress and heat flux term denote Cartesian coordinate

directions.

The dimensional quantities (denoted by A ) are nondimnsionalized

using freestream conditions (denoted by o), £ (the reference length

used in the Reynolds number) and,

A A AA

x =-X z - t t A D
L L L L

-A A A Au v _w a (2.6)

a, ,  aQ0  AO) a.,
A A A A

AP P T'-
Pl =T -- P A A2 A -

A TAA

where a0, = Ro

is the freestream speed of sound.

This nondimensionalization results in a set equations of exactly

the same form as Equation (2.1) but without the A.

a q + af + Ly + a = 0 (2.7)
at ax ay a z

0

, ! 8



2.2 Curvilinear Coordinate Transformation

Bquation (2.7) can be transformed into a curvilinear coordinate

system which allows the use of body-conforming grids in order to simplify

the implementation of boundary conditions. The curvilinear coordinates

used in this transformation are

= (x,y,z,t)

1I = I (x,y,z,t) (2.8)

= (x,y,z,t)

T = T(t)

Note the use of time, t, to define the curvilinear coordinates. This

will allow for the time dependent motion of a body. The details of a

time dependent transformation to curvilinear coordinates are given for

0the Navier-Stokes equations in Appendix A.

2.3 Thin-Layer Navier-Stokes Bquations

A numerical solution of the Navier-Stokes equations can require

large amounts of ccputer time and memory. One assumption often made to

reduce the cost of a solution is to neglect all viscous terms which

contain derivatives in the direction parallel to the body. The original

development of this idea is presented in Reference 18. This assumption

is justified since these terms are substantially smaller than the terms

with derivatives normal to the body. Also, it would be impractical to

think a grid could be refined enough in the direction parallel to the

body to resolve the diffusive terms in this direction. The solution of

the TLNS set of equations has an advantage over the boundary-layer

9



equations, which assume also that the normal pressure gradient is

negligible. Therefore, the thin layer Navier-Stokes equations (TLNS) are

capable of handling flow separation and reverse flow regions with no

special considerations necessary.

After the curvilinear coordinate transformation, the Navier-Stokes

equations have the form

aQ + LiF G+ aH (2.9)

aT ;J h' d

where the vectors Q,F,G, and H are defined in Appendix A, Equation (A.9).

If the thin layer assurtion is made for the solid surface to exist on a

constant q grid line, as is normal for a "C type" numerical grid, then

viscous terms inside the F and H flux vectors are neglected along with all

the terms in flux vector G which contain derivatives with respect to

either or . This results in the thin layer Navier-Stokes

equations as follows

,)Q a F + aG + A H 0 (2.9)

aT It, dii

where,

Pu

Q = J'T t PV

Pw

e

10



ptu + X
F=JX pvu + yp

pwlJ + Z

L(e -p )U - r'

puV + 1'IxP - Tq

G Y pvV + I - T (210

pwV + 11-p -T

PW
PUW + (X

pwW +(_

(e +p VW -qp

andi

u +} U + yV + qZw

W =1 + nu+ (jv + 11-W

T = IITX+ IlT+ I1LTXZ

T = IITY+ 1 T + 11:Txy (.1

T z 11 T, + 1 T liT_..

FT, = ilxq Tq y+ izq=



Applying the thin lay'-r assumption, the viscous stress tensors

described in Equation (A. 10), beccme

2pM. 2qL 1V -'

T 2P M. [211 V u - 1w]]W

y= [23 R --lxU,. X - llWri]

rze = 7 z2 7) - -Un - Zv.,

T = RMw [1 Un + 1xVITxy R , y 9 x T

r p w II [ Un  + 1 w

T III V[I]t +

yz = Re, [i1V + 1yW n

and the heat flux terns beome

0q I= "

qy = ~ i-l T l~
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SECION III

DESCRIPTION OF SPLITrING TECHNIQUES

3.1 Basic Implicit Algorithm

A comparison of the FVS and FDS numerical schemes referenced in

Section I can be easily understood by considering the one-dimensional

Euler equations

4Q + = (3.1)
it ;

An implicit, finite volume discretization of Fquation (3.1) may be

written as

AQ11 'F' 32

+ _.. = 0 (3.2)
AT Al

where,

AQ11 = Qn+' - Q1

and

- F ' (FI 2 - I- ,2 ),1 l

Since in the curvilinear coordinate transformation the term Au

can be set equal to one, it may be dropped from the equation. Equation

(3.2). when solved for AQ '", becomes

AQ' = -ATF1 +' (3.3)

Since the flux F is a non-linear function of the dependent variables

(p,pu,pv,pw,e) then, using a linearization first described by

13



0Briley and McDonald' 9 and Beam and Warming 20 where,

Fn"I = F I + NA QI + O(Atz) (3.4)

the first order accurate scheme, O(At), based on the backward Euler

differewcing formula, Equation (3.3) is

(I + AT 5,A' )AQn = -LT F n  (3.5a)

while a second order accurate scheme, O(At - ), based on the three point

backward differencing formula of Equation (3.3), is

+ 2 AT A A, T)F + lAQ11- (3. 5b)

Note that the dot( ) indicates the ) operator acts on the entire term

(AAQ), etc., and the term Al, is defined as the jacobian

of the flux vector

A F

IQ

3.2 Flux-Vector Splitting

The eigensystem of the flux jacobian matrix A is necessary to

achieve the desired splitting. The flux jacobian matrix can be

diagonalized as detailed in Reference 21. The resulting diagonal matrix

A has the eigenvalues of A as its diagonal elements,

A = Tj\T - (3.6)

where T is a matrix whose columns are the right eigenvectors of A, and

14



S T -l's rows are the left eigenvectors.

The one-dimensional Euler equations have three real eigenvalues

associated with the jacobian matrix A. The eigenvalues are tne

characteristic velocities of the system. The flux vector F can be

written as the sum of two subvectors. The subvectors are written with a

superscript (+) which indicates the portion of the flux vector resulting

in nonnegative eigenvalues and superscript (-) which indicates the

portion of the flux vector resulting in the nonpositive eigenvalues

F = F4 + F (3.7)

where

+ A I A) (3.8)
A -

which allows the split flux jacobian matrix A to be defined

A = Ti T-' (3.9)

Since the flux vector F is a honmogeneous function of degree one in Q

then

F A-Q (3.10)

The splitting of the flux vector F described above is the flux vector

splitting of Steger and Warming 4.

An upwind first order spatially accurate scheme using the splitting

described can be constructed as

15



FI+>i/ : F* + F- (3.11)

= (F + Fi+ ) - (JAI +IQ,., - IAJQj )

where

JAl =A + -AK

van Leer'0 has pointed out that many numerical fluxes may be

written in the form

F -!(F +D(QiQi )'(Q(jQ - Q,) (3.12)2+112 = 2 + 1+1 2 I

and the freedom of choosing a numerical flux formula essentially lies

in the choice of the matrix coefficient, D(Q, ,Q,41 ) of the

dissipation term.

0 The dissipation matrix corresponding to the Steger-Warming splitting

has been shown to contain too much numerical dissipation. The result of

this additional dissipation is a smearing of shocks and contact

discontinuities.

3.3 Flux Difference Splitting

The flux vector split scheme described above has been described by

Barth22 as being a "point-by-point splitting" or in other words a

flux vector at a given point is split without concern of the state of its

neighboring points. In contrast to this idea, the flux difference split

scheme referred to in Section I is based on the "interaction" of

neighboring points through an approximate solution to the Riemann

initial-value problem. The FDS scheme used in this work was based on

Roe's approximate Riemann solver which uses an intermediate state of the

16



dependent variables 0 to determine the matrix coefficient A() of

the dissipation term described in Equation (3.12). The numerical flux

formula for the Roe type schene is

Fi+1 /2 = (F+ ) - A (Q - ) (3.13)

11 2 I 2 1+1 'A 1+1/2 (Q11 l Q

Roe 5 required the matrix A(Q, ,Q,+, ) to have the following list of

properties, which he calls Property U since it ensures uniform validity

across discontinuities:

(i) It constitutes a linear mapping from the vector space Q to

the vector space F.

(ii) As Q, -- Q1+1 -+ Q, Then A(Q, ,Q1, ) -i A(Q), where A = _F

aQ

(iii) For any Q,, Q1, A(Q,Q 1 )" (Q1+ 1 - Q,) = F~1 - F,

(iv) The eigenvectors of A are linearly independent.

Property (ii) ensures that the approximate solution approaches the exact

solution as the mesh size is decreased. Reference 10 points out that

Property (iii) results in the fact that if the eigenvalue of A(Q, ,Q,+, )

vanishes then the corresponding eigenvalues of the dissipation matrix

JAj vanish, since the eigenvalues of JAI are the absolute value of

the eigenvalues of A. Since the numerical dissipation vanishes, this

results in nice sharp modeling of shocks or contact discontinuities as

opposed to the Steger-Warming FVS scheme in which the eigenvalues of the

dissipation matrix of I AI become discontinuous whenever the corresponding

eigenvalues of A vanish.

Let X 1, j=1,2 ...m be the eigenvalues of the Roe matrix A and

17



rJ be the right eigenvectors and 11 be the left eigenvectors such that

1] and rJ are orthonormal then

i - Jil = 0 (3.14)

and

(A - XJI)r= 0 (3.15a)

I (A - XII) 0 (3.15b)

Jeffery 23 (see Chapter 2) has shown that the change across

each characteristic curve associated with a specific Xj is proportional

to the right eigenvector rl associated with that eigenvalue of the Roe

matrix A

m

Q1,1 - Qj = rJ (3.16)
J-1

Jeffery has also shown that

AdQ = \dQ J (3.17)

Therefore, extension to the one-dimensional Euler wiuations results in

F1+1 - F = A(Q,Qil) " (Q1,1 - Q) (3.18a)

= VY X'r (3.18b)
I. IJ-1

m

= VdfI (3.18c)
1-I

where df - is the change in a flux vector across each characteristic

curve associated with the eigenvalue 'X

A numerical formula for the flux vector at a cell interface i+1/2 for

18



the one-dimensional Ebler equation might be

m
F1+1/ 2 = F1 + '£j 2  Jrj  (3.19)

i-I

where the (-) superscript on X , indicates that only characteristic

curves associated with negative eigenvalues (i.e., nonpositive slope in

Figure 3.1) are used.

t

dx X2 dx = m-1
dt it

dx d m dx Am

dtd

Figure 3.1 Characteristic Waves

Another flux formula is

mF 1 /J-F1 J -(3.20)FI+1/2 = FI+ I  (3.20)A  x

i-I

where the (+) superscript on X indicates that only positive

19



eigenvalues are used. Finally, a third flux formula is obtained by

averaging Equations (3.19) and (3.20)

m
F~+ 1  

1 (F+ F. I~ Vol~jr (3.21)
11 2 I +1 2 i-I

The flux formula given in Equation (3.21) can be interpreted to be

in the form described by Equation (3.12) by letting

= IAI (QJ+, - Q) (3.22)

and from Equation (3.16)

m
= ;---l A 0jr j  (3.23)

1-I

The Roe matrix A is diagonalizable just as the flux jacobian

matrix A for the FVS scheme is in Bquation (3.6), so that

IAl = T(A - A-)T -  (3.24)

and
m
Y ,T(A' - A)T '-irJ (3.25)

Equation (3.25) can be shown to reduce to the following (see Reference 3)

m

= JI X l JlrJ (3.26)
]-I

Therefore Eluation (3.21) can be written as

'I/2 -1 (F, + F, +,) - ,A (Q - Q, (3.27)

0 -2 2 2 11+1/2 Q+(3.27)
20



The extension of both of these schemes (FVS and FDS) to higher order

accuracy andL full three-dimensional equations is considered next. The

discussion will deal with the set of equations as though they were purely

hyperbolic partial differential equations (i.e., 3-D Euler equations).

This is possible by treating the diffusive flux terms explicitly and

therefore placing them on the right hand side of Equation (2.9) as source

terms. The details of this explicit treatment of the viscous flux terms

are discussed in Section IV.

3.4 Flux-Vector Splitting for Three Dimensions

Since the viscous flux terms are to be treated explicitly the

remaining terms form a set of hyperbolic partial differential equations

characterized by a limited domain of dependence. The solution at a point

is not dependent on every other point in the field and information

travels only in certain characteristic directions. If a numerical scheme

is selected to take advantage of this fact, then information for

numerical differencing is taken only frcm the direction from which

information is propagating (i.e., upwinding). The use of upwind

differencing normally alleviates the necessity for adding numerical

dissipation to smooth the results near discontinuities such as shocks.

This becomes apparent when one considers the discussion in paragraph 3. 1

concerning the nature of the dissipation matrix at or near

discontinuities. The details of the upwind, finite volume, flux-vector

split scheme for the three dimensional Euler equations have been reported

many times (References 3,7,9,and 21), and thus only the highlights will

be provided here.

The flux jacobian matrices A,B, and, C for the three-dimensional
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unsteady Baler equations are

A F

B G

.3Q

C Q

The eigenvalues of the flux jacobian matrices are the characteristic

velocities in the three coordinate directions. The flux vectors F,G,and,

H can be written as the sum of two subvectors as shown in Equation (3.7)

for the one-dimensional equation. The subvectors are written with a

superscript (+) which indicates the portion of the flux vector resulting

in nonnegative eigenvalues and superscript (-) which indicates the

portion of the flux vector resulting in the nonpositive eigenvalues

0
F =F + F-

G = G+ + G (3.28)

H =H + + H -

Each of the split flux vectors are linearized the same as described in

Equation (3.4)

F+ = Fn + A+AQ + O(At 2 ) (3.29a)

Fn 1 =F-n +AAQn + O(At 2 ) (3.29b)

+n+I l +n+1'I
and similarly for G ,G H , andH

The split flux jacobians are now defined as the true jacobians matrices

obtained by differentiating the positive and negative flux vectors
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instead of the splitting defined in Equation (3.9)

A+ = IF (3.30)aQ

A7=IF
-)Q

and similarly for B +,B-,C ,and C-. The derivation of these split

flux jacotjian matrices are given in excruciating detail for dynamic grids

in Reference 2.

When the split form for the fluxes given by Equation (3.29) is used,

Equation (3.5), when expanded to three dimensions, becmes

[I + AT(8 A++ 8A-+ Bt+ 6 B-+ C'+ XC)] AV = -ATV' (3.31a)

an= ( + ++ -+ + + + .E ) (3.31b )

The flux vector splitting results in a seemingly simple expression

but one which proves inpractical to solve for most problems of any

practical size due to the wide bandwidth of the matrix system. Many

different factorizations have been used for this system by Whitfield'.

The factorization used in this work was the two factor scheme, in which

all terms corresponding to nonnegative eigenvalues (+) are luned

together and all terms corresponding to nonpositive eigenvalues (-) are

lunped together.

[I + ATT(65A% + 8r] B+ 6C" )]

[I + AT(hA-- + B.-+ 6C. )] A' = -AT9m (3.32)
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The factorization error created is no larger than the linearization error

already inherent in the scheme, O(At 2 ).

The solution to Equation (3.32) is carried out as follows

[I + AT(6 A 9 + q B . + 6 C . )] X' = -ATR n  (3.33a)

[I + AT (6A-. + 81B-. + C-. )] X 2 = X (3.33b)

AQ n = x 2  (3.33c)

The solution of Equation (3.33) results in two passes through the

computational field. The first pass, Equation (3.33a), solves a sparse

block lower triangular system and the second pass, Equation (3.33b),

solves a sparse block upper triangular system. This results in a very

efficient numerical scheme since only forward and backward substitution

are required and not a matrix inversion.

Now only a description of the central difference operators in

Equation (3.33) is needed to coplete the description of the flux vector

split scheme. Since the scheme is finite volune, dependent variables are

known at cell centers; however, the central difference operators

represent flux differences at cell faces. The value of the dependent

variables at cell faces are determined by an extrapolation. For a

positive extrapolation a value at the cell face labeled (i+1/2,j,k) is

determined from

Q3 1 (3.34a)Q++12 = 2Q -2 Q'-' +  (I

or

Q+I+/2 =Q1 + O(AI) (3.34b)
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and for a negative extrapolation

1= 3 + 0( ) (3.35a)
Q1+112 -2QI+ '2Q1+2

or

Q-1112 = Qi+ 1 + O(A) (3.35b)

The first order extrapolations are used for the difference operators

on the left-hand (iplicit) side of Equation (3.33) where only first

order spatial accuracy is necessary since for steady results A -0.

The second order extrapolations are used on the right-hand (explicit)

side of Equation (3.33) to give a second order spatial accurate scheme.

In order to evaluate the split flux difference term in the residual

vector, Equation (3.31b), using F+ and F as examples, a set of positive

eigenvalues, I(Q ), and positive split fluxes, F (Q4), are found using

the dependent variables described in Equation (3.34), where F, (Q) is the

ccnponent of the flux, F, associated with the eigenvalue X,.

Similiarly, using Equation (3.35) a set of negative eigenvalues, )l(Q ),

and negative split fluxes, F, (Q-), are determined.

The total flux through a cell face (i+1/2,j,k) is determined

using

F1+1/1 = F + + F

1 [ Q1() + (Q+)] F, (Q) (3.36a)
I-I

and

5
F- = '2 (Q-)  '1X ( ) F,(Q-) (3.36b)
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0 The numerical scheme described here has been labeled EMULE (Brown's

1,-ke) by Whi+ field 7

3.5 Flux Difference Splitting for Three Dimensions

The FDS scheme used here has been described in detail by Whitfield'

for application to the three-dimensional Euler equations. The FDS scheme

of Roe is based on an approximate Riemann solver which solves the linear

Riemann problem (shown in one-dimension, where A is the jacobian

matrix).

N +A(QIQ 1 NQ = 0 (3.37)

The flux formulas discussed in paragraph 3.3 can easily be extended

to three-dimensions by splitting the wave into the three curvilinear

coordinate directions since the eigenvalues are dependent on the

contravariant velocities normal to a cell face. The wave motions are

split based on these eigenvalues resulting in a set of equations in which

the wave motion is normal to the cell interface just as though they were

a set of one-dimensional equations.

The jacobian matrix A(Q, ,Q,41) is evaluated using a set of

special averaged values. The "Roe avoraged" variables for the three-

dimensional Euler equations are

4P i, + tI
i 4,- + p,,

V I + IV +[ (3.38)

+ p 4

W= $ I + P1 1 Wtf+4 + Vt.,
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and

a2  (y-1) h - +(u2 + v 2 w 2 ) (3.39a)

PV 2  ) (3.39b)e =y- + ,u2 + +w2~

where h is the total enthalpy. Roe and Pike 24 have shown that these

averaged variables are the only ones having the required properties to

satisfy the Property U requirements. The details of the derivation

of the "Roe averaged" variables are given in Reference 5.

An implicit algorithm using the flux difference described in

Equations (3.19) and (3.20) is obtained by linearization of the first

order flux. The metrics, denoted by M, are included in the expansion of

the flux vector and the jacobian mrn'ix in order to note the spatial

location that the metrics are to be evaluated. Also, noted as a

superscript is the time step to which the metrics correspond, this

becomes important for calculations using dynamic grids. Equations (3.19)

and (3.20) are written in the following form using the same development

as described in Reference 3, where

Fn+ = Fn+1 + A - (Qn+1 _ Qn+l) (3.40a)
1+1/2 1 1+1/2 1+1 I

and

n+1 = Fn+l + - (Qn+l _QIn+1) (3.40b)
1-1/2 I i-1/2 1 I-I

A formal linearization of Roe's numerical flux (Equation (3.40) is

extremely complicated as recognized by Barth22 . An assumption often

made to simplify the linearization is to neglect the spatial derivatives

of the Roe matrix A If this assumption is made then the
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linearized flux difference at cell i is

Pn+l - Vn+1 = Vn f; n + A - Qn _ + Qn +

1+1/2 1-1/2 1+1/2 1-1/2 1+1/2 1+1 1-1/2 I-I

[A(Qn, M n+ ) _ - -A(Q n, M n+ ) + + ] 1Qn (3.41)
1 1+1/2 1+1/2 i 1-1/2 1 1/2 I

If the locations of the metrics in the jacobian mtrics A are

neglected then Equation (3.41) results in

n+1 n+1 -n -nQ -

F F F - F + A AQn A- +
1+1/2 1-1/2 1+1/2 1-112 1+1/2 1+I 1-112 I-I

+ + ]AQn (3.42)
t+ 112 1 1 /2 1

or if

b(AAQ)t = A1+1/2 A Q+ - AI+1/2 AVQn (3.43)

thenSn+1 -n+l -n n 
(3.44)

1+112 t-1/2 1+1/2 1-1/2

The remaining two flux terms, G and H, follow in a similar manner.

Therefore, Equation (3.5), when expanded to the three-dimensional Euler

equations for the FD6 schere, results in

[I + A (b A- + A-+ 8 n+ _i8 + 945 -+ ] Ae = -ATr (3.45a)

and

Rn = (8 F + 5 ,P + ,5 + ,+ 6 + + h) (3.45b)

Note that Equation (3.45) has the same form as Equation (3.31) frcm the

flux vector split form of Equation (3.5), however, the flux jacobian

matrices in Equation (3.45) are the Roe matrices, and the jacobian

matrices in Equation (3.31) are the true partials of the positive and
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negative flux vectors. Solutions to Equations (3.31) have been obtained

but as noted in Reference 3, in all cases tested improved results and

convergence rates were obtained from solving Equation (3.31a) but using

the residuals from Equation (3.45b)

[I + AT(6 Al+ 5 A-+ 8B-+ B-- + C-+ C*)] Q = -R' (3.46a)

and

R + + + , ++ + H(3.46b)

Therefore, the implicit solution from the FVS scheme is used with the

residuals for the FDS scheme.

The reason for the improved results using the implicit portion of

the FVS scheme, Equation (3.31a), instead of the implicit portion of the

FDS scheme, Equation (3.45a), is due to the fact that approximated flux

jacobians are used for the FDS scheme while, the FVS scheme uses the true

partials of the flux split jacobians. Any approximations for these flux

jacobian terms have nearly always degraded the convergence rates of the

solution.

The numerical fluxes discussed in paragraph 3.3 are only first order

accurate in space. Higher order methods used here (second and third

order) are due to Osher and Chakravarthy 2. The implementation of the

higher order methods is described by Whitfield 3 (refer to Equation

(54)).

Using Equation (3.19) for the first order flux, a second or third

0 order scheme for the flux at cell interface i+1/2 may be obtained by
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0 adding a correction term. If all "Roe variables" and metric terms used

in conputing the eigenvalues and eigenvectors are evaluated at the cell

face i+1/2, then the higher order flux formula becomes

m
F~1 t2 = F(Q1)1+112 + V rt  +

1+112 +1,/2

* {~' [L (-1,) -L-(3,1)J + (3.47)

1-b

where

- (3.48)
0 , =~1 141 I. l+p12

and

=/2 (Q1- Qt 1 ) (3.49a)

YJ,12 = l (Q+1- Q1 ) (3.49b)
, j 1

= II (Q+1- Qi+1) (3.49c)
j.1+312 1+1/2

Two flux limiters were tested in this work; they are defined as the

mirm-cd and superbee limiters:

++

L-(l,n) = minnmd ( + , b I- ) (3.50a)
J .14112 1. l+n12

minmod(x,y) = sign(x) max {0,min[IxI ,y sign(x)]} (3.50b)

b - 3(3.50c)

The minmoed limiter, where b is the carlression parameter, uses two

arguments, x and y. When these arguments are of opposite sign the value

returned is zero. When they have the same sign the value returned is the

smaller absolute value. The minmod limiter uses as its two arguments the

unlimited flux value at a cell interface and ccspares this value with the

product of the compression parameter and the flux value at the
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neighboring interface on either side. When these values have the same

sign then the value returned is nearly always the unlimited flux value

since the capression parameter used in these calculations was large (two

for the second order scheme and four for the third order scheme). Points

in the solution where these values might have different signs are the

maxima or minima of fluxes (i.e., shocks or strong gradients). In these

cases the unlimited fluxes can easily have different signs, in which case

the minmod limiter returns a zero and the solution reverts to first

order.

The superbee limiter used in conjunction with Bquation (3.47) is

sinply

L Lt- ( , n )  - L+- (n , l )  (3.51a)

L+(l,n) = atpli ( - , ) (3.51b)
J J, 1+1/2 J, I+n/2

crplim(x,y) = sign(x) {max O,min[Ix Oy sign(x)]

min[plxl ,y sign(x)]) (3.51c)

where 0 is the ccnpression parameter, which was set to 2 for all

results shown here.

The second order truncation error is presented for several

combinations of * and b in Table I from Reference 13.

0
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SECTION IV

THIN-LAYER NAVIER-STOKES ALGORITM

4.1 Explicit Treatnent of Viscous Ter ms

The diffusive terms may be written as separate vectors in the thin-

layer Navier-Stokes equations, Equation (2.9) becomes

AQ + IF + ,(G-S ) , H
_ + + - 0 (4.1)

aT a,: aii a

where

0

Tq1X

S J'

Tlz

(uTnx + vTy + wT,. - q

and T,,k (k=x,y,or z) are defined in Equation (2.11).

Since the Sv vector is made up of diffusive terms which do not

have "the characteristics of a set of hyperbolic partial differential

equations in which a set of characteristic velocities exist, it is

impossible to split the diffusive terms into subvectors associated with

any characteristic velocities and impossible to upwind difference these

terms. Therefore, the inclusion of these terms into the left-hand side

of either Equation (3.31) or Equation (3.45) would destroy the efficiency

of the upper and lower triangular matrix solution, by requiring a central
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differencing of these terms. In an effort to include the effects of

viscosity and yet maintain the efficient structure of the algorithm

Gatlin6 has for stationary grids neglected the inclusion of the viscous

flux jacobians in the left-hand side thereby treating the viscous terms

explicitly. The result is the viscous terms at each iteration (n+1) are

evaluated using the information (dependent variables and metrics) from

the previous iteration (n).

An implicit, finite volume discretization of Equation (4.1) with the

viscous terms becomes

AT + + - + - (4.2)
AT Al A Al

However, instead of the linearization of Equation (3.4) for the viscous

0 terms, they are linearized as

S. n+1 = S n + O(At) (4.3)

The remaining fluxes are split and then linearized according to Equation

(3.29) and the equation is factored into two factors in the same manner

as described for Equations (3.33) as

[I + AT (8,A +' + 8 TB+" + %C '.)

[I + AT(8A" + 5 B -+ r" )] A = -AT n  (4.4)

except now the residual term includes the viscous fluxes which contain

derivatives with respect to the normal to solid surfaces,
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+ ( + +1 + + 'V) (4.5)

The residual vector in Equation (4.5) can be used in either a FVS

(Bquation (3.31b)) scheme or a ELS (aluation (3.45b)) scheme. This

implementation maintains the solution algorithm efficiency of the

original Daler algorithm (average increase in coaputational time is less

than 10%) while including the viscous effects negleted in an Ibler

algorithm. Gatlin 6 has shown this algorithm to give reasonable

engineering solutions for high Reynolds number flows when used with the

FVS scheme for stationary grids. Results will be shown in this work for

both FVS and FDS schemes and for both stationary and dynamic grids. The

method used to evaluate the viscous flux term has been described in

detail by Gatlin 6 and is not repeated here.

0
4.2 Boundary Conditions

All of the boundary conditions used have been applied explicitly.

The boundary conditions are implemented using one layer of phantcm points

outside of the computational field, which results in a first order in

space extrapolation at the boundaries and enhances the vectorization of

the computer code. The phantom points at farfields are set to enforce a

certain condition (supersonic or subsonic inflow or outflow) at the cell

face, which is on the boundary, while at solid surfaces they are set to

enforce the no-slip condition. The change in dependent variable, AV,

is set equal to zero for all boundaries except at block boundaries.

All farfield and downstream boundaries used characteristic variable

boundary conditions as derived in Reference 21 for stationary grids and
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Reference 2 for dynamic grids. Characteristic variable boundary

xonditicns are designed to allow information to flow into or out of the

computational field as dictated by the signs of the eigenvalues.

The boundary conditions for inpenrable surfaces are set using a no-

slip implementation of the zero pressure gradient boundary conditions.

These boundary conditions have been adapted for dynamic grids by observing

the grid speed X b and the equations

P = P, (4.6a)

= P (4.6b)
P P

--4 --4 .--

Vp = 2 X b - Vf (4.6c)

=- p + ( ,UP + V + w2  (4.6d)

where, the subscripts p, f, and b, denote phantan points, field points,

and boundary points respectively. Figure 4.1 shows graphically the

inplementation of no-slip condition for a cell centered formulation.

Kb Vf

V I
P 1

Figure 4.1 No-slip boundary conditions for dynamic grids.
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Finally, the block-block boundary conditions were derived by Belk 2

for both stationary and dynamic grids. To suniarize the discussions of

different block-block boundary conditions, many combinations of treatment

for AQ n and dependent variables at block boundaries exist. Those

used for the ze-ults crtaincd here ver, two phanton points, AQ

approximated (which results in local truncation error of O(A),

see Belk 2 ) and synchronized dependent variables.

4.3 Turbulence Modeling

The numerical solution of the Navier-Stokes equations (Equation 2.1)

for turbulent flows require the viscosity to be determined by the

relation

010 + (4.7)

where is the molecular viscosity and V, is the eddy viscosity

and is supplied by the turbulence model. Similarly, the thermal

conductivity is determined by

K = + Kt (4.8)

where K, is the laminar conductivity and is obtained from

[1 0 
(4.9)S=P'(cy-1

while is the turbulent conductivity determined frcon
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(4.10)

where P, =0.72 and Pr t =0.90 for air.

Since the configurations studied here ar aixfoils and wings with

little or no flow separation, the Baldwin-Lnmax 26 turbulence model was

selected. The Baldwin-Lomax turbulence model is a two-layer algebraic

eddy viscosity turbulence model which uses a sirrple algebraic expression

to determine a value for tj in the inner layer nearer the wall

and in the outer layer. The Baldwin-Lcmnax model has the advantage

of not requiring the determination of the edge of the boundary layer but

relies instead on the vorticity profile to determine the for the

inner region:

= pl21.,o (4.11)

where

1 = KY[1 - exp(-Yr/26)] (4.12)

and

Y' = Y (4.13)

W is the vorticity, Y is the normal distance from the solid surface,

K= 0 .4 is the von Karman constant, Tm is the maximum of TW

and T., where TW is the wall shear stress and T. is the maximum

shear flow in a local velocity profile. The results of the selection of T

in the flow solution is discussed by Gatlin 6.
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For the outer region the eddy viscosity is given by

-KCF Fk eI1 (4.14)

where Cp=1.6 is a constant and K=0.0168 is the Clauser constant.

Feax is the maxiwmi of the profile F(Y) given by

F = min (YmnxF;lxC__wax U'f/Fmax ) (4.15)

and

F(Y) = YI 0 I [i - exp(-Y/26)] (4.16)

Ymax is the y value at which Fmx occurs. Qk=0.25

is a constant. Fkt,b is the Klebanoff intermittency factor

determined from

Fkleb(Y) L + 5.5 (qb) 6 ]- (4.17)
Ymax

where qleb=0.3.

Ud iff was defined by Baldwin and Lcmax as the difference

between the maxinm and minimum velocity magnitudes in a profile

Udiff = (4U 2 +V 2 +W 2 )mx - ( 4U 2 +V 2 +W 2 )mi.l

4.4 Time Accuracy and Subiterations

Calculations of unsteady aerodynamics requires a time accurate

numerical scheme in which each grid cell is advanced in time an equal

amount (i.e., minimum time stepping). The size of a time step is limited
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by the Courant-Friedrichs-Lewy number (CFL), which is the number of cells

across which a characteristic wave will propagate in one time step. If

steady state solutions are of interest then it is possible to update each

grid cell by an amount in time which places that cell at an optimum CFL

nLuner for converqerce (i.e., local time stepping). This is not time

accurate since each grid cell will be at different time levels, but this

does not matter when a steady state solution is being sought where AQ- 0.

All the steady calculations presented here resulted from local time

steps, while all the unsteady calculations resulted fran minimun time

steps in which each grid cell was updated the same increment in time.

The use of minimum time steps can be very expensive for viscous

solutions since grid c11s near solid surfaces are very small ccmpared to

grid cells in outer regions of the flow field (6-7 orders of magnitude

0 difference in cell volumes). This means very small time steps must be

used over the entire flow field for minimum time stepping to maintain a

reasonable maximum CFL in the grid cells near solid surfaces. If a

maximum CFL of 100 is occurring in the grid cells near a solid surface

then, most of the flow field is being advanced in time with CFL 's of much

less than one (CFL = 0.001-0.00001).

Belk 2 has shown good inviscid unsteady results using this FVS

scheme for an oscillating airfoil in transonic flow using a maximum CFL

of approximately 100. To obtain a maximum CFL of 100 on the inviscid

grid it was necessary to take 500 time steps per cycle of oscillatory

motion of the airfoil. To obtain the same approximate maximum CFL (100)

on a viscous grid would require approximately 500,000 time steps for one
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0 cycle of motion. Obviously unsteady viscous calculations for maximum CFL

numbers on the order of 100 are very expensive and are not practical even

on today's fastest computers.

If unsteady viscous calculations are to become a practical tool for

use in design and analysis of transonic fighter aircraft and weapons then

it will be necessary to reduce the number of time steps needed for a

calculation (i.e., increase the max CFL allowed). With this implicit

algorithm a linear stability analysis indicates an unconditionally stable

scheme. Gatlin 6 discusses stability concerning the explicit

treatment of the viscous terms. His linear stability analysis indicates

the scheme maintains its unconditional stability for high Reynolds number

flows only. For unsteady problems it is not enough to simply remain

stable, one must also maintain time accuracy when using these large CFL

nurdbears.

A test case used to study the effect of CFL on stability and time

accuracy was the NACA 0012 airfoil oscillating in pitch ablxit its quarter

chord point in transonic conditions. The conditions used in these

calculations were taken from the experiment by Landon27 , with Mach

number of 0.755, ,ean angle of attack, CV.. of 0.0160, an unsteady

angle of attack amplitude, t , of 2.511, and a reduced frequency

or Strouhal number, k, of 0.1628 based on chord length,

k - (4.19)
VG-

where

3 = frequency

= chord length
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* and

A
V00 = freestream velocity

The angle of attack of the airfoil was varied according to

y (t) = ly + t_ I sin( Jt) (4.20)

Unsteady viscous calculations for the NACA 0012 airfoil at these

conditions were made for different time step sizes to determine the

effects of large CFL numbers on unsteady viscous calculations. All of

the NACA 0012 calculations presented were obtained using a "C" type

numerical grid shown in Figure 1 with 221x40 points. The grid was

generated using the Numerical Grid Generation Code - EAGLE written by

Thcmpson (Reference 28). A great deal of effort was expended to generate

a grid which had as much orthogonality as possible at the airfoil surface

(see Figure 1.b), since the FDS scheme was found to be very sensitive to

orthogonality. The spacing set for the first point off the body was

0.000001 which gave approximately 15-20 grid cells inside the boundary

layer and resulted in a minimum Y' of much less than I (actually 0. )

over the entire airfoil.

The unsteady calculations were performed by first obtaining a steady

solution for the airfoil at the mean angle of attack, (V" = 0.016'.

The motion was impulsively started with the angle of attack varied

according to Equation (4.20). The entire grid was oscillated as a rigid

body. The pressure distributions for sevxal different time step sizes

are presented in Figure 2. These pressure distributions are "snap-shots"

of the pressure in time as the airfoil is in motion. The airfoil is at

the 60" of motion point which corresponds to an increasing angle of
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attack through 2.20%. The small time step size DT = 0.00102 was used

as a reference time step to compare with other results in order to check

for time accuracy. As the time step increases the solution deteriorates

to the point of being unusable even though the solution did not "blow-up"

and continued for a ccmplete cycle. Table II summarizes the results in

Figure 2, two additional time step sizes have been included in Table II

for ccmparison purposes.

The results shown in Figure 2 certainly indicate that if unsteady

viscous calculations for the oscillating airfoil are to be practical or

affordable, additional considerations must be made to allow calculations

on the order of 1000 time steps per cycle of motion or less. An approach

taken to help in this cause was a use of Newton iterations to converge

the solution at each time step before updating to the next time step.

These Newton iterations, referred to here as subiterations, have been

tried successfully by others (see Reference 17), but not with the two

algorithms described in paragraphs 3.1 and 3.2 and not with the explicit

treatment of the viscous terms.

The implementation of subiterations into the scheme described by

Equations (3.31 or 3.46) is a simple additional term added to the right-

hand side and a redefinition of AQ' on the left-hand side. Using

the FVS scheme as an example (the implementation is exactly the same for

the FDS scheme), one has

[I + AT (Q)A% + 6,,. + C. )]

[I + ATBA + '+ 6,C' )] AV' = -ATR '  (4.21a)
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-AT R' = -A T~- + 5 + + .+ + + 6j SP+ ] (4.21b)

where A a is defined as

= - (4.21c)

where p is the subiteration count. When p=O, Q P =Q ' , and the

system reverts to the noniterative scheme of Equation (3.31). At

convergence, Q P -. Q n+ Note that in this case the viscous terms

are not time lagged. The normal operating procedure was to

sinply set the number of subiterations desired rather than check the

convergence level after each subiteration.

Oretga and Rheinboldt2 9 write the Newton iteration in the form

XP l = X - F'(Xe' P ' ) - ' F ( X )F p=0,1,2,... (4.22)

where k(p) is an integer less than or equal to p. When k(p) is less than

p then the F' (X) is re-evaluated less than each iteration which

translates into "freezing" the flux jacobians. When k(p) = p the

jacobians are evaluated each iteration and Equation (4.22) results in the

normal Newton iteration

XP*" = W - F'(9')-'F(X)' p=0,1,2,... (4.22)

When k(p) = 0 the jacobians are never updated and Equation (4.22) is then

referred to as the simplified Newton method

43



XP+' = XP - F'() 1F(X)P p40,1,2,... (4.23)

The significance of freezing the jacobians and the resulting

simplif ied Newton method is a trenendous savings in computations since

the cost to recalculate the flux jacobians is between 40% - 45% of the

cost of doing an entire iteration. Both methods were tried with no

noticeable differences in the results, therefore, only the simplified

Newton method results will be reported on.

Pressure distributions for the NACA 0012 at 6C0 motion are shown

in Figure 3 for two time step sizes. The smaller time step size, DT =

0.0511, (see Table III for a description of the conditions for the

subiteration check cases) shows some moderate wiggles for the zero

subiterations while for only four subiterations the solution is much

smoother and is suitable for determining the lift and mcment coefficients

for use in design and analysis studies. However, for the larger time

step size, DT = 0.2044, the original solution without subiterations is

very irregular and even after 32 subiterations the solution still shows

(Figure 4) a significant number of wiggles. The solution could be

smoothed but would require numerous subiterations due to the slow

convergence rates for the subiterations and would not be cost effective.

The idea of using subiterations for unsteady calculations was to

converge the solution at each tine step and therefore allow for much

larger time steps sizes. However, Swanson and Turkel 3° have

reported on the problem of converging solutions with numerical grids

designed for viscous flows which have a large variation in grid cell

aspect ratio between grid cells near a solid surface and grid cells in

the far field. A solution for the convergence rate problem in
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subiterations which worked well was to use the idea for accelerating

steady state convergence, that is local time stepping.

Local time steps used for the subiterations seemed to have a

tremendous ipact on the convergence rate for the subiterations. The

local time steps were inplemented such that the overall time accuracy of

the minimun time step iterations was preserved. Equation (4.21b) then

becomes

-AT R' = -ATIoca, + (8V + G + i + 8,V)] (4.25)

The result of using local subiterations, Equation (4.25), was a

significant increase in the convergence rate for subiterations as long as

the CFL for the local subiterations was small enough to maintain

0 stability. Numerical experiments showed that the local CFL must usually

be less than one. This fact would eventually became the Achilles heel

for local subiterations since, determining the optimum local CFL n mber

which allowed the Newton subiterations to remain stable and still

converge rapidly, proved to be extremely difficult. A method guaranteed

of selecting the optimum local CFL number was not found; however,

provided a proper value for the local CFL was found the local

subiterations converged faster than the minimum time steps.

The pressure distributions in Figure 5 show very smooth results for

time step size, Ur = 0.05111, using local time stepping subiterations

even for only two subiterations. The results in Figure 6 show much

smoother pressure distributions for time step size, [r = 0.2044, than

did the mininum time steps (Figure 4). Even though there is a
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significant amount of ringing near the shock, this solution would seem to

be sufficiently smooth to give reasonable engineering answers for lift

and moment coefficients.

Figure 7 shows a ccrparison for the time step size, DT = 0.05111,

with 4 minimum subiterations and 4 local subiterations. The results are

very similar for the two cases. However, both subiteration cases show

the shock wave farther aft than does the smaller time step size with no

subiterations. Since the shock is still building in strength and moving

aft, the larger time step size shock position is said to be "leading" the

smaller time step size. This situation was consistently observed for

these large time step size calculations.

The time accurate calculation of unsteady aerodynamics would at

first glance seem to require a second order terporal accurate scheme.

However, Belk 2 has shown that for Euler calculations on oscillating

airfoils and wings there is very little difference between solutions

obtained with a second order accurate scheme and those obtained using a

first order accurate scheme. The extension of the Euler algorithm to

include the diffusive terms (paragraph 4.1) requires the diffusive terms

to be time lagged and results in a first order scheme regardless of the

time discretization used. For exanple, consider the linearization as

described in Equation (3.4)

r + = P, + K, + O(At 2 ) (3.4)

When this linearization is used in conjunction with the second order

time discretization given in Equation (3.5b) the result is a second order
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accurate scheme. When Equation (3.4) is used in conjunction with the

first order time discretization given in Equation (3.5a), the result is a

first order accurate scheme. When the viscous terms are added explicitly

using the linearization given in Equation (4.34), the formal time

accuracy is dropped to 0(At) regardless of the order of the time

discretization used, either Equation (3.5a) or (3.5b).

The use of subiterations would, it appears, alleviate this problem

of time accuracy, since at convergence, the linearization and

factorization errors go to zero. Therefore, using the second order time

discretization described in Equation (3.5b) with subiteciLions, gives a

second order accurate in time scheme at convergence. A comparison of a

first and second order differencing with, DT = 0.0511, is shown in Figure

8 using 16 minimum subiteration time steps, which resulted in an order

of magnitude reduction in the residuals. There are sane differences,

with the major difference being the shock location. Since the shock at

this point in the motion is still strengthening and moving aft very

rapidly, then, as would be expected, the first order shock position lags

the second order shock position.

The result of these investigations was to help select the time step

sizes, number and type of subiterations to be used for calculations of

the oscillating airfoil and wings for several cycles of motion. Minimum

time step subiterations were used because of the problems of selecting

the local CFL for the local time step subiterations. A time step size

considered appropriate for inviscid calculations was used with 4-5

subiterations, which resulted in a good tradeoff between cost and

accuracy. These results will be presented in Section VI, but first a
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0 coparison of the FVS and FDS schemes for steady viscous calculations

will be presented in Section V.

0
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SBCTION V

STEADY RESULTS

The description of the splitting techniques in Section III idicated

the FDS scheme based on Roe's approximate Riemann solver should out

perform the FVS scheme (BvJLE) based on the Steger-Warming splitting.

Van Leer and Gatlin have pointed out that the numerical dissipation for

the VS scheme is too large to allow the accurate modeling of flow

discontinuities such as shocks and boundary layers. In order, to

document the effects of numerical dissipation for viscous flow solutions,

several steady configurations were tested to ccrpare the FDS scheme with

the FVS scheme.

5.1 Flat Plate Boundary Layer

The first configuration was a laminar flat plate boundary layer

calculation for Mach = 0.5 and a Reynolds number based on plate length of

Re = 10,000. Flow solutions for a laminar boundary layer on a flat plate

were obtained using two grids. Both grids used 70 points in the

freestream direction with 10 points in front of the plate stretched from

the outer boundary, located 4.0 plate lengths in front of the plate to

the plate leading edge. The next 50 points were uniformly distributed on

the plate, and the last 10 points were placed aft of the plate, stretched

from the plate trailing edge to 5 plate lengths downstream of the plate.

The two grids differed in the number of grid lines in the normal

direction from the plate and in the spacing set for the first point off

the plate. The first grid used 20 points in the normal direction with

the first point off the plate set at 0.002 plate lengths (fine grid),

0while the second grid used 15 points in the normal direction and the
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first spacing was 0.02 plate lengths (course grid).

The laminar boundary layer profiles are presented in Figure 9 for

the Roe scheme on the course grid, and BMULE on both the course and fine

grids. The calculations are shown compared with the Blasius solution for

a laminar flat plate. The Roe scheme matches very well with the Blasius

solution using the course grid. Note that the Roe scheme has

successfully modeled the laminar boundary layer profile with only three

mesh points internal to the boundary layer. The fine grid results with

the MILE scheme do not ccmpare as well as the Roe scheme. The

additional grid refinements did not improve the BKULE results. The B4JLE

scheme has too much numerical dissipation to capture the laminar boundary

layer profile, even on the fine grid.

Calculations with the two schemes were also completed for a

turbulent flat plate boundary layer. While the Roe scheme still out

performed the 3MULE scheme, the differences were not so dramatic. The

Roe scheme was able to model the turbulent boundary layer with a

relatively course grid once again. However, it was necessary to ensure

that at lease one grid point was inside the laminar sublayer of the

turbulent boundary layer. Therefore, the Roe scheme or the BMULE scheme

requires a spacing for the first grid point off the body to be such that

a minimun Y' (Equation 4.13) of less than 2-3 occurs. This criterion

was used in the remaining calculations to ensure the turbulent boundary

layers were being satisfactorily modeled.

5.2 RAE 2822 Airfoil

The RAE 2822 airfoil was used as a check case for the thin-layer
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Navier-Stokes algorithms using both Roe and MNULE. The RAE was selected

because of the experimental data31 which exists for pressure, skin

friction, and velocity profiles.

The RAE 2822 is a supercritical airfoil as shown in Figure 10, with

a design Mach number of 0.66. A 221 x 31 x 2 grid was used to compute

the flow for the case presented. The 31 grid points were stretched from

1 x 10- 6 spacing for the first point off the body (close enough to

guarantee a minimum Y < 1), 5 chord lengths to the front farfield

boundary, and 10 chord lengths to the top and bottom farfield boundaries.

The downstream boundary was set at 15 chord lengths with 30 points in the

wake. The remaining points (160) were spread around the airfoil, with

clustering at the leading and trailing edges.

Flow solutions were obtained for the RAE using the grid described

above for four algorithm combinations. The Roe scheme was used with

minmod limiter in both the second and third order spatially accurate

mode, and with the superbee limiter, which is second order accurate.

The H4JLE scheme was used to compare with each of the Roe scheme

algorithms. The flow conditions for the ccmputation were taken at Mach =

0.73 and angle of attack = 3.19 S. The flow conditions were corrected

to account for flow angularity and wall effects to the condition

recommended by Cook et a131. The calculations were at Mach = 0.734

and angle of attack = 2. 79. The Reynolds number for both the

experiment and the calculations was 6.5 x 10 6, based on chord

length.
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Figures 11 .a - 11 .d show the ccmparison for the Roe minmod limiter

with 2nd order spatial accuracy and the B'ULE 2nd order accurate scheme.

Figure 11 .a shows the pressure distribution, while 11 .b, and 11.c show

coaparison of velocity profiles at two stations on the upper surface of

the airfoil. Figure 11.b shows the velocity profile at 32% of the chord,

which is well ahead of the upper surface shock, while Figure 11 .c shows

the velocity profile at 57% chord, which is very near the upper surface

shock. Figure 11 .d shows a ccmparison of skin friction between the two

algorithms and experimental data for the upper surface.

Figures 12.a - 12.d and Figures 13.a - 13.d follow the same pattern

as Figures 11.a - 11 .d, with Figures 12 ccmparing the Roe minmod 3rd

order scheme with the BIULE, and Figure 13 conparing the Roe superbee 2nd

order scheme with the BK3LE scheme.

Each of the algorithm cases ccnpare very favorably with the pressure

data (Figures (II - 13).a). Roe schemes match better in the shock regions

due to the numerical dissipation in the B4ULE scheme smearing the shocks.

The Roe superbee scheme was the only one to accurately model the leading

edge expansion for the RAE. However, the Roe superbee did not do as well

in the shock region due to superbee predicting a small shock induced

boundary layer separation bubble, which was not evident in the

experimental data or in the other calculations.

The velocity profiles shown in Figures (11,12,13)b-c are

plotted as UC/Ue (contravariant velocity/contravariant velocity at the

edge) versus the normal coordinate distance frcm the upper surface. The

edge of the boundary layer was determined to be the cell at which the
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maximum U' and contravariant velocity values occurred. When these

maximum values did not occur in the same griC cell, a simple averaging

was used to determine Ue. As is evident in all the plots, the Roe echee

is far superior to the E4JLE scheme. The H.ULE scheme consistently

predicts a thicker boundary layer than that shown in the experimental

data. This again is attributed to the numerical dissipation in the BKJLE

scheme. The superbee limiter as discussed above predicts some flow

separation behind the shock which is made more evident by observing the

velocity profile for 57% chord position, Figure 13.c. In all other cases

the Roe scheme conpares very well with the experimental velocity

profiles, and this is true for these calculations even though the grid

contained 10 less points in the normal direction than did Gatlin's

6 , which would be considered by some as already being a sparse grid.

(See References 32 and 33.)

A comparison of skin friction between the Roe scheme, BKJLE scheme,

and experiment are shown in Figures (11-13 )d. Both the Roe scheme and

B1ULE tend to overpredict the skin friction when compared to experimental

data. Most of the calculations match well with the experimental data up

to the shock location, but both schemes tend to greatly overpredict the

skin friction behind the shock. The skin friction data near the trailing

edge for Figures 11.d and 12.d was lost due to a data file transfer

error. Once again the evidence of superbee's separated region behind the

shock is evident in Figure 13.d.

Even though the Roe scheme gives improved results in almost all

cases shown, the improvements do not come cheaply. Figure 14 shows a

convergence history for the two schens. Obviously, the EIJLE scheme
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converges much faster than does the Roe scheme, so much so that after

only 800 iterations at a CFL = 15, the B1JLE residuals are nearly an

order of magnitude smaller than are the Roe scheme residuals. Numerical

experimentation showed that 800 iterations was the minimum necessary to

obtain engineering answers (after which the solution did not change) for

the Roe scheme while only 500 was necessary for B4JLE. This translates

into many fewer iterations necessary to arrive at the same convergence

level for the BMJLE scheme. When this is added to the fact that the Roe

scheme has a higher operations cost than does 3MULE, nearly 20%, since

B1ULE runs at 6.185 x 10- 5 CPU sec/iteration/point while Roe runs at

7.417 x 10 - 5 CPU sec/iteration/xoint, it becomes evident the Roe scheme

is much more expensive to use.

5.3 ONERA M6 Wing

The (HERE M6 is a symmetric 12% thick airfoil section with a sweep

angle of 30 degrees. The wing is tapered with a taper ratio of 0.56 and

has an aspect ratio of 3.8. Extensive wind tunnel test data exist for

the ONERA, in particular pressure data for transonic flow conditions

(Reference 34). The ONERA is used here to compare the B1JLE scheme and

the Roe scheme with experimental data for a steady three-dimensional

configuration at Mach = 0.84, angle of attack = 3.06 degrees, and Re =

2.6 x 10'

The grid used in these calculations was a 111 x 40 x 25 "C-O" type

grid. The grid was generated using a distribution similar to that used

for the NACA 0012 airfoil grid described in paragraph 4.4. The upper and

lower airfoil sections in this grid were generated independently with the

first point in the grid (1,1,1) being at the wing leading edge. The grid
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used a spacing 1 x 10- 6 for the first spacing off the body, which

resulted in a min Y+ < 1 over the entire grid. The outer boundaries

were extended to 10 chord lengths in all directions. Figure 15 shows a

closeup of two K planes (constant spanwise location) and the airfoil

section. The grid was generated by letting the K=I plane be the plane of

grid points on the upper wing surface at the root section. The K-planes

were then distributed linearly along the upper surface to K=8 at the

upper surface tip (Figure 15.b). Planes 9 through 17 were then rotated

in a circular arc to model the wing tip, while K-planes 18 through 25 on

the lower surface were distributed linearly from the tip to the root.

This wraparound wing tip grid shown in Figure 15.c, allows the modeling

of the wing tip as it existed in the wind tunnel model.

The test case was run for foux algorithms just as for the RAE

airfoil. The BMULE algorithm was compared to the Roe algorithm using the

2nd order mirrcd limiter, 3rd order minmnd, and 2nd order superbee

limiter. The test case was a transonic condition which results in a

double shock configuration, which is evident in Figure 16.a at near

midspan point (44%). Figure 16.b at the 65% semispan location also shows

a double shock, but with the separation distance between the two shocks

decreasing. Finally, Figure 16.c shows the pressure distribution at 95%

semispan location, where only a single shock exists in the flow. The

configuration obviously results in the lambda double shock pattern for

transonic conditions on a swept wing, where the two shocks coalesce to

form a single shock near the wing tip. The results follow the same

pattern as the RAE airfoil, where the Roe scheme consistently models

shocks in much fewer points with less smearing. None of the schemes show

any sign of flow separation, which also agrees with the experimental
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data. Figure 17 shows a series of pressure contours along the wing span.

The contours in Figure 17.a at 44% semispan location clearly show a weak

shock at the 20% chord position and a much stronger shock near the 60%

chord position. Figure 17.b shows the result at 65% semispan location.

Strong shocks exist at about the 20% and 50% chord positions, and the

rear most shock is located further forward. The 95% semispan location

(Figure 17.c) clearly shows the shocks having coalesced to form one at

the 25% chord position and this shock is by far the strongest shock of

all those observed in Figure 17. Figure 17.d shows a view of the

contours along the upper surface and the double shock pattern coalescing

into a single shock at the tip. These solutions ccmpare well with the

experimental data. The comparison of the Roe scheme with the B1ULE

scheme is as expected. The Roe scheme shows slightly improved results in

the leading edge expansion region and directly downstream. The Roe

scheme is obviously superior again in all shock regions where BIULE has

smeared the shocks over several grid cells. There is little or no

difference between the two solutions for the lower surface calculations.

0
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S SECTION VI

UNSTEADY RESULTS

6.1 Oscillating NACA 0012 Airfoil

Unsteady two-dimensional calculations were performed for the NACA

0012 airfoil oscillating in pitch about the 25% chord point as described

in paragraph 4.4. The grid used was the same as previously presented in

Figure 1. The calculations presented in paragraph 4.4 were all for only

the first 60 degrees of oscillatory motion. The calculations were all

stopped at this point in the cycle to compare results from different time

step sizes and subiteration combinations. The results to be presented

here are examples of taking selected cases from those presented

previously and continuing the motion for a full 4 cycles (1,440 degrees

of oscillatory motion) and comparing the lift and moment coefticient time

histories and selected "snap-shots" of the pressure distributions from

the last cycle of motion.

The first case presented is a comparison of 4 minimum time step

subiterations and 4 local time step subiterations both for DT = 0.05111,

which corresporxis to a maximum CFL of 45,000 compared with a 0

subiteration case using a DT = 0.005111 time step. The 0 subiteration

case at DT = 0.005111 was used at the small time step for comparison

purposes instead of the DT = 0.00102, which was used for the first 6W-

motion cases. This larger time step was selected for cost savings, since

to calculate 4 cycles of motion with the small time step (DT = 0.00102)

would require 200,000 iterations, while the larger (Dr = 0.005111)

required 40,000 iterations. The lift coefficient versus time plot is

S shown in Figure 18.a and the moment versus time shown in Figure 18.b.
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Only a slight difference in the lift curve is noticeable at the maximum

and minimum values of lift due primarily to the slight displacenent of

the shock location resulting form the larger time steps. The difference

is more pronounced for the moment curves (Figure 18.b).

The second case presented is a copiarison of a one-block grid and a

three-block grid shown in Figure 19 for the NACA 0012 airfoil. Four

minimum time step subiterations were used for both the one-block and the

three-block grids with a time step of DT = 0.05111. Figure 20.a - 20.h

show snap-shots in time of unsteady pressure distributions for the two

blocking arrangements. The slight differences in scr q of the pressure

distributions can be attributed to a couple of reasons. First,

as mentioned in Section IV the boundary conditions used at block

interfaces were those de ,eloped by Belk, and the error generated by

approximating the AQ (O(At 2 /Ax)) causes a slight misplacenent of

the shock position between the one and three block cases, especially for

the times when the shock is traveling the fastest (i.e., Figures 20.a and

20.e). Secondly, the use of blocks degrades the convergence rates for

steady solutions (see Belk 2) and as a result the subiterations for the

three-block case do not converge as rapidly as do the subiterations for

the one-block case, which accounts for the slight differences in the

unsteady pressure distributions elsewhere in the solution.

Figure 21 shows the pressure contours for the three-block case at

the end of the fourth cycle of motion. Note that even though the airfoil

is back to the 0 degree angle of attack position, the flow field is not

symetric and a relatively strong shock still exists on the lower

surface. This is a good example of how the aerodynamics lag the
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time-dependent motion of the body.

The third and last two-dimensional case presented is a comparison of

the same 4 minimum time step subiteration case using the first order

backward Eler differencing formula, Equation (3.5a), carpared with 4

minimum time step 2nd order subiteration using the three-point backward

difference formula given in Equation (3.5b). Figure 22 show snap-shots

of the unsteady pressures at the same times as shown in Figure 20,

compared with the experimental data27 . As noted by Belk 2 this

data is somewhat suspect due to obvious asymmetric properties, even

though the solution should be very nearly a symmetric solution. Belk

determined a steady angle of attack somewhat larger than the 0.016'

should be used to improve the correlation between experimental data and

calculations.

The second order solutions show the shock leading the shock

location predicted by the first order solutions for DT = 0.005111 and rT

= 0.05111 with 4 minimum subiterations. The largest difference occurs

when the shock is traveling the fastest, such as the 701 of oscillatory

motion (Figure 22.b). Note that at the point where the shock is

basical'y stationary (i.e., 160' of motion) the two DT = 0.05111 cases

for first and second order schemes are essentially identical. At all the

times shown in Figure 22 the second order solution shows a closer

agreement with the experimental data than does the two first order

solutions.

The ccmparison of the 2nd order solution and the experimental data

indicates an even closer agreement between the two would be possible if a
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slightly larger steady angle of attack was used for the calculations.

For exazmple, a larger steady angle of attack added to the unsteady angle

of attack would in Figures 22.b - 22.d result in a larger expansion

region and a shock location farther aft as indicated by the experimental

data. Likewise, in Figures 22.f - 22.h when the airfoil is at negative

angle of attack a larger (more positive) steady angle of attack would

result in a smaller expansion region on the lower surface and the shock

located farther forward as indicated by the experimental data. This

confirms Belk's findings on the same subject.

6.2 Oscillating Supercritical Rectangular Planform Wing

The supercritical rectangular planform wing was used as the three-

dimensional unsteady check case for this work due to the extensive amount

of wind tunnel test data 5 that exist. The wing has an aspect ratio

of 2 and was oscillated about the wing pitch axis located at the 40%

chord. The experimental data used was taken in Freon, and therefore the

ratio of specific heats is y = 1.131 with a transonic Mach number of

0.7 and a steady angle of attack of 4".

The grid for this case had 221 x 40 x 15 points. The grid used a

"C" mesh in the streamwise direction and a "H" mesh in the spanwise

direction. Each of the K planes (constant spanwise location) have the

same point distribution as the two-dimensional grid used for the NACA

0012 airfoil calculations, Figure I.a, with clustering at the leading and

trailing edges. The distribution was selected to give the most

orthogonal grid possible, Figure 23.a. There are 10 such planes of data

distributed down the wing span, with the planes being clustered near the
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tip. The wing tip was not modeled in this case as was done for the (IERA

M6 wing, but instead the airfoil was simply collapsed to a line at the

K=1 1 plane, which was placed just out from the wing tip. An additional 4

grid planes were distributed in the spanwise direction to the farfield

boundary (Figure 23.b). The spacing for the first point off the wing was

such that a minimum Y' of 1.5 occurred on the wing.

The grid described was used for steady calculations to copare with

the experimental data from Reference (35) to verify the quality of the

grid before performing the unsteady calculations. The results near the

wing tip are of particular interest since the grid used did not model the

tip correctly. The transonic flow conditions were Mach = 0.701 and 4.0°

angle of attack, which was considerably different from the supercritical

design conditions of Mach = 0.8 and 0.(P angle of attack, and results

0 in a sharp shock near the 20% chord. The Figures 24.a - 24.d show

excellent agreement with the experimental data and confirm the quality of

the grid (including the collapsed wing tip) to accurately model the flow

field for the rectangular wing. Belk 2 has reported a predicted shock

position downstream of the position shown in the experimental data using

an inviscid approximation. The inclusion of the viscous terms has

corrected the position of the predicted shock to more nearly coincide

with the experimental data.

The three-dimensional unsteady calculations were obtained at a Mach

number 0.699 and a steady angle of attack of 4.03". The angle of

attack was varied according to Equation (4.20) with an unsteady amplitude

of 1.035 and a reduced frequency, Equation (4.19), of 0.358.
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A steady starting condition was obtained using a CFL of 5 for 1,000

iterations, after which the motion was impulsively started. The

calculations were run for three cycles of motion. During the third cycle

the pressure coefficients were saved at each time step. The time step

size was DT = 0.069, which corresponds to 360 time steps per cycle of

motion (same as used by Belk 2 for the inviscid calculations), and 5

minimum time step subiterations were used to converge the solution at

each time step by nearly one order of magnitude. The maximum CFL for

this case was approximately 17,000.

The magnitude and phase of the unsteady pressure coefficients from

the third cycle of motion was obtained by Fourier analysis. The

magnitude and phase of the unsteady pressure coefficients are presented

along with the inviscid results from Belk 2 and the experimental

data35, for the semispan locations in Figures 25.a - 25.g. Again

the predicted results compare well with the experimental data. Belk 2

reported a misplacement of the sharp spike in magnitude of the unsteady

pressure coefficient due to the inviscid code misplacing the shock. Once

again the inclusion of the viscous terms has seemingly corrected this

problem to give good agreement with the experimental data.

The good canparisons tend to drop off as the wing tip is approached,

such that at the 95% semispan location the phase canparison with the

experimental data (Figure 25.f and 25.g) is not as good. The shift in

the phase for the upper surface is obviously misplaced, and the phase for

the lower surface is consistently under predicted. The story is similar

but not as severe at 85% senispan location. It should be noted that the

experimental data at this station for the lower surface is highly
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suspect, since the data does not follow the obvious trend of the data at

the stations on either side (inboard or outboard). The reduced accuracy

at the tip should cane as no great surprise considering the grid

treatment of the wing tip. Belk's 2 results, while showing some decline

in accuracy near the tip, do not show as dramatic a change. This

strengthens the argument for blaming the grid topology used ("C-H") since

Belk used a ("C-O") type grid similar to the one used in this work for

the ONERA wing.
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SEXTION VII

CONCLUSIONS

Two algorithms have been presented for computing unsteady thin-layer

Navier-Stokes solutions for oscillating airfoils and wings. The

algorithms, flux vector split (FVS) and flux difference split (FDS) were

first ccmpared for steady viscous calculations. The computed laminar

boundary layer profiles for a flat plate were compared with the Blasius

solutions and the EDS was the clear winner since it managed to capture

the laminar profile with only three grid points inside the boundary

layer, while with four times as many grid points inside the boundary

layer, the FVS scheme could still not match the comparison of FDS with

the Blasius solutions. The inability of the FVS scheme to capture a

laminar boundary layer is due to the excessive numerical viscosity in the

scheme. Similar inprovements in the computed steady solutions for the

RAE 2822 airfoil and the ONERA M6 wing were observed for the FDS scheme.

The numerical dissipation in the FVS scheme is also observed in shocks in

the form of snearing the shock waves over several grid cells. The

iproved solutions for the FDS scheme did not come cheap, since the FDS

scheme has a higher operational count than does the FVS (approximately

20% higher), and the convergence rate for the FDS scheme is slower than

the FVS scheme, therefore requiring more iterations to reach the same

convergence level (approximately 25% more iterations).

The second order FDS scheme with the minmod limiter was selected as

the algorithm to be used for the unsteady thin-layer Navier-Stokes

computations. The emphasis was placed on obtaining time-accurate viscous
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solutions for oscillating airfoils and wings as cheaply as possible.

Since the diffusive term were treated explicitly, the formal temporal

accuracy of the algorithm without subiterations was limited to Ist order

accurate. A form of Newton subiterations was implemented to converge the

unsteady calculations at each tine step before progressing the solution

to the next time step. The use of these subiterations then allowed the

calculations to progress at much larger time step sizes (and CFL number)

than would otherwise be possible. The use of subiterations also provided

the capability for a 2nd order time accurate scheme at convergence of the

subiterat ions.

The use of subiterations were shown to significantly improve the

quality of the solution, and in sane cases allow a solution to be

obtained which otherwise would have been impossible at the time step size

being used. Unsteady calculations for the two-dimensional NACA 0012

airfoil were performed to help select the proper ccmbinations of the step

size and subiteration number to give the best possible solution. The

results fran these calculations were used to make more extensive two and

three-dimensional unsteady calculations to ccmpare with experimental

data. The three-dimensional calculations for the supercritical

rectangular planforn wing showed excellent agreement with the

experimental data, and the use of subiterations with the FDS scheme

resulted in a relatively efficient algorithm which could be used in more

corplex three-dimensional unsteady viscous calculations.
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TABLE I

SECOND ORDER TRUNCATION ERROR

NAME b 2nd order TE

1/3 Third-Order 4 0

-1 Fully Upwind 2 1 (AX) 2

Frtm's 3 1 (Ax) 2

1/2 Low -- d order 5-(Ax) 2

I Central 00

-1/3 No Name 5 (AX),
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TABLE II

SUMMARY OF TIME STEP SIZE RUNS

TIME STEP # ITERATIONS CPU SEONDS # SUBS

0.0010 8250 46060 0

0.0051 1640 9161 0

0.0102 833 737 0

0.0511 167 149 0

0.1022 83 76 0

0.2044 42 39 0

First 6-' of motion.
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TABLE III

SUMMARY OF SUBITERATION RUNS

TIME STEP # ITERATIONS CPU SECONDS # SUBS

0.0511 167 1546 16 MIN

0.0511 167 497 4 MIN

0.0511 167 324 2 MIN

0.2044 42 729 32 MIN

0.2044 42 383 16 MIN

0.2044 42 214 8 MIN

0.0511 167 1530 16 LOCAL

0.0511 167 495 4 LOCAL

0.0511 167 322 2 LOCAL

0.2044 42 735 32 LOCAL

0.2044 42 382 16 LOCAL

0.2044 42 20P 8 LOCAL

First 60' of motion.
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0 APPENDIX A

CURVILINEAR TRANSFORMATION

The Navier-Stokes equations in Cartesian coordinates frcm Equation

(2.7) are

alq + L f + L) g + ,) h = 0 (A. 1
at ajx A]y 1-1z

The general curvilinear coordinates are given as

1: (xyz,t)

11 = 1 (x,y,z,t)

= ((x,y,z,t) (A.2)

T = T(t)

Expanding the Cartesian coordinates in terms of the curvilinear

coordinates using the chain rule gives

11 1I a 1 a I Aill
(it 1 t A T A t a'c At All "it c

- _ a a ~a 1 1 a
-) _ 8 + J|8 + 8" (A.3)

AY LY y ;,IY ' III LIY y

~ a ~ a l a +a(
.5z az a Jz a lz (

The inverse of this relationship is determined by expanding the

curvilinear coordinates in terms of Cartesian coordinates (in matrix

form) as
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g a01 - x Y a
di- 0 X( Y( Z( a.

Le qat-on (A.4)bewitna

J, i i u id

The jatcba coffiethe transfoermione is ginvetig the eti [A]t yeielda

-t. J- 11zz +1 yx 11~ + -

11 =Y (XyZ -yZ.x

01 =' (yx - xt y :V
140



x= J' (yZ1 - z Y

( = J-  -Zl.)

( z F (x Yll -Y X l1

_ 1 (A.6)

t t T

Ilt = Tt -X T 1x - YTTIy -ZT 1z )

lit = Tt (- X Tlx - y -T(y - Zlz

't t~ (- Xr ' -y Y - zTJZ)

Substituting the expanded derivatives in Cartesian coordinates (Equation

(A.3)) into the Navier-Stokes equations (Equation (A. 1)) results in

T q + q + q (q-- aT t a nt all t a(
af af

a ll +  l l + Lill +

z all z a

Then by multiplying Equation (A. 7) by Y and using the chain rule

Equation (A. 1) becomes

aQ +AF + + L) H-=0 (A.8)
-JT a all a~

where,
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* P
Pu

Q=J'Tt piV

pw
Le

PU

PUU + p- x

F=JX pvU + (5p - Tn
y

pwU + p- z

L-(e~p )U - - uT~x -VT~y -wT~z + F-

PV

puV + q P- I q (A.9)

G X PVV + 1 - T l

pw V + m r-P - T W T +
- e+p )V 111 - UT fix -VT T q .

pW

puW + XP-T 7

H X' pvW + p - ~

pWW + (p-T

(e~p )W (, - uTrx vT~~y wT~.. +

andi
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0U=~ + x U+ y V + z w

V I= + 1i "u + 11yV+ 11 -1w

w + (- U + ( y v +( z W

T = xx + YY ZX

T jT + + T

T = 11Jxz + TTZ + 11,Tzz(A1

T YI I1X +1IITYX + IZT...

T = IITY+ q T + jT (.1

T~. T + (T + T

F . = q yq y + A

The visous stress tensors for the full Navier-Stokes equations are
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0Txx 2PJ1x M.-(X %,4 U V4qVI V - ( zW+zWri+ zW&

T 2P M. -2 -yq v TU, ) - Q, n w U

2P M, [2( w n~~~ (~v+v 1 ~)

T~y R + lTir ,. ~~ +~ xv~

T ~ [ u ,z~ + z + .. + q~w, + w .]

andi the heat flux term~ are

q -1 0 [orl T + T +

q y , k 1,0. T + riyT + ~y r

q I . + rTe T +
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